Special Geometry

Yang Zhang

ABSTRACT: N = 2 Supergravity^{*}

^{*}based on hep-th/0607227, Boris PiolineA

Contents

1.	N =	2 Supergravity	1
	1.1	Supersymmetric multiplets	1
	1.2	Special geometry	2
	1.3	4D action	3
	1.4	Central charge	4
2.	Calabi-Yau		4
-			

1. N = 2 Supergravity

1.1 Supersymmetric multiplets

We consider D = 4, N = 2 supergravity. The supersymmetric multiplets with spin less or equal than 2 are,

• One gravity multiplet, containing the graviton $g_{\mu\nu}$, two gravitini ψ^{α}_{μ} and one Abelian gauge field \mathcal{A}_{μ} known as the graviphoton.

$$(-2, -\frac{3}{2}^2, -1) + (+1, +\frac{3}{2}^2, +2)$$
 (1.1)

• n_V vector multiplet, each consisting of one Abelian gauge field A_{μ} , two gaugini λ^{α} and one complex scalar z. The complex scalars z take values in a projective special Khler manifold \mathcal{M}_V of real dimension $2n_V$.

$$(-1, -\frac{1}{2}^2, 0) + (0, +\frac{1}{2}^2, +1), \quad n_V \text{ copies}$$
 (1.2)

• n_H hypermultiplets, each consisting of two complex scalars and two hyperinis ψ , $\tilde{\psi}$. The scalars take values in a queternionic-Khler space \mathcal{M}_h of real dimension $4n_H$.

$$\left(-\frac{1}{2}, 0^2, \frac{1}{2}\right) + \left(-\frac{1}{2}, 0^2, \frac{1}{2}\right), \quad n_H \text{ copies}$$
 (1.3)

We consider the ungauged N = 2 supergravity, i.e., the hypermultiplets is not charged by the vector multiplets. The special geometry describes the *vector multiplet*.

1.2 Special geometry

The coupling of the vecot multiplets, including the geometry of the scalar manifold \mathcal{M}_V , are conveniently described by means of a $Sp(2n_V + 2)$ principal bundle ϵ over \mathcal{M}_V , and its associated bundle ϵ_V in the vector representation of $Sp(2n_V + 2)$. The origin of the symplectic symmetry lies in electric-magnetic duality, which mixes the n_V vectors A_μ and the graviphoton \mathcal{A}_μ together with their magnetic duals. Denoting a section Ω by its coordinates (X^I, F_I) , $(I = 0, ..., n_V + 1)$, the antisymmetric product

$$\langle \Omega, \Omega' \rangle = \begin{pmatrix} X^I \ F_J \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} X'^J \\ F'_I \end{pmatrix} = X^I F'_I - X'^I F_I$$
(1.4)

The symplectic form is $\langle d\Omega, d\Omega' \rangle = dX^I \wedge dF_I$.

The geometry of \mathcal{M}_V is completely determined by a choice of a holomorphic section $\Omega(z) = (X^I(z), F_I(z))$ taking value in a Lagrangian cone, i.e. a dilation invariant subspace such that $dX^I \wedge dF_I = 0$. The special geometry constraint is,

$$\partial_J X^I F_I - X^I \partial_J F_I = 0, (1.5)$$

where $J = 1, ..., n_V + 1$ and the derivatives are in the projective coordinates of \mathcal{M}_V . Furthermore, we may choose the

 X^{I} as the projective coordinates, hence (1.5) is simplified to,

$$F_I = X^J \frac{\partial F_J}{\partial X_I}.$$
(1.6)

So we can define the prepotential $F = \frac{1}{2}X^J F_J$ such that,

$$F_I = \frac{\partial F}{\partial X^I}.\tag{1.7}$$

The prepotential is an homogeneous function of degree 2 in the X^I . The Hessian of the prepotential, $\tau_{IJ} = \partial_I \partial_J F$, is independent of X^I . Hence

$$F_I = \tau_{IJ} X^J. \tag{1.8}$$

At a generic point on \mathcal{M}_V , we can choose the *special coordiates* $z_i = X^i/X^0$ $(i = 1, ..., n_V)$ as the holomorphic coordinates for \mathcal{M}_V . Once the holomorphic section $\Omega(z)$ is given, the metric on \mathcal{M}_V is obtained from the Kähler potential,

$$\mathcal{K}(z^i, \bar{z}^i) = -\log\left(i\langle\bar{\Omega}, \Omega\rangle\right) = -\log\left(i(\bar{X}^I F_I - X^I \bar{F}_I)\right). \tag{1.9}$$

The metric

$$g_{i\bar{j}} = \partial_i \partial_{\bar{j}} \mathcal{K} = i e^{\mathcal{K}} \langle \partial_i \Omega, \bar{\partial}_j \bar{\Omega} \rangle - \partial_i \mathcal{K} \bar{\partial}_j \mathcal{K}$$
(1.10)

Under a Kähler transformation, $\Omega \to e^{f(z)}\Omega$,

$$\mathcal{K} \to \mathcal{K} - f(z) - \bar{f}(\bar{z}),$$
 (1.11)

and the metric is invariant. We may define the rescaled holomorphic section as,

$$\tilde{\Omega} = e^{\mathcal{K}/2}\Omega,\tag{1.12}$$

which transforms by a phase, $\tilde{\Omega} \to e^{(f-\bar{f})/2}\tilde{\Omega}$ under the Kähler transformation.

The derived section is defined by $U_i = D_i \tilde{\Omega} = (f_i^I, h_{iI})$, where

$$f_i^I = e^{\mathcal{K}/2} D_i X^I = e^{\mathcal{K}/2} (\partial_i X^I + \partial_i \mathcal{K} X^I)$$
(1.13)

$$h_{iI} = e^{\mathcal{K}/2} D_i h_I = e^{\mathcal{K}/2} (\partial_i F_I + \partial_i \mathcal{K} F_I).$$
(1.14)

Hence the metric is

$$g_{i\bar{j}} = -i\langle U_i, \bar{U}_{\bar{j}} \rangle. \tag{1.15}$$

1.3 4D action

The kinetic term of the $n_V + 1$ Abelian gauge fields (including the graviphoton) is $(I = 0, ..., n_V)$,

$$\mathcal{L}_{Maxwell} = -(Im\mathcal{N}_{IJ})\mathcal{F}^{I} \wedge \star \mathcal{F}^{J} + (Re\mathcal{N}_{IJ})\mathcal{F}^{I} \wedge \mathcal{F}^{J}$$
(1.16)

where \mathcal{N}_{IJ} is defined to be

$$\mathcal{N}_{IJ} = \bar{\tau}_{IJ} + 2i \frac{(Im\tau \cdot X)_I (Im\tau \cdot X)_J}{X \cdot Im\tau \cdot X}.$$
(1.17)

which satisfies these relations,

$$F_I = \mathcal{N}_{IJ} X^J, \quad h_{iI} = \bar{\mathcal{N}}_{IJ} f_i^J. \tag{1.18}$$

Note that \mathcal{N}_{IJ} has X dependence, so the coupling constants of the 4D action depend on the vector multiplets moduli. $Im \mathcal{N}_{IJ}$ is a negative definite matrix, as required for the positive definiteness fo the gauge kinetic terms.

We may absorb the Yang-Mills angle terms as,

$$\mathcal{L}_{Maxwell} = Im[\bar{\mathcal{N}}_{IJ}\mathcal{F}^{I-} \wedge \star \mathcal{F}^{J-}]$$
(1.19)

where $\mathcal{F}^{I-} = (\mathcal{F}^I - i \star \mathcal{F}^I)/\sqrt{2}$.

The dual field of $F^{I;\mu\nu}$ is, ¹

$$\mathcal{G}_{I} = \frac{1}{2} \frac{\partial \mathcal{L}_{Maxwell}}{\partial \mathcal{F}^{I}} = (Re\mathcal{N})_{IJ} \mathcal{F}^{J} + (Im\mathcal{N})_{IJ} \star \mathcal{F}^{J}$$
(1.20)

¹The functional derivative should be viewed as the formal derivative in F^{I} , not $F^{I,\mu\nu}$.

Under the symplectic transformation,

$$\begin{pmatrix} X \\ F \end{pmatrix} \to \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} X \\ F \end{pmatrix}$$
(1.21)

 \mathcal{N} transforms as "period matrix" $\mathcal{N} \to (C + D\mathcal{N})(A + B\mathcal{N})^{-1}$, while the field strengths $(\mathcal{F}^{I-}, G_I^- = \bar{\mathcal{N}}_{IJ} \mathcal{F}^{J-}_{\mu\nu})$ transform as a symplectic vector,

$$\begin{pmatrix} \mathcal{F}^{-} \\ \mathcal{G}^{-} \end{pmatrix} \to \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} \mathcal{F}^{-} \\ \mathcal{G}^{-} \end{pmatrix}.$$
 (1.22)

The 4D action can be rewritten as

$$\mathcal{L}_{Maxwell} = Im(G_I^- \wedge \star \mathcal{F}^{I-}), \qquad (1.23)$$

which is invariant under the simplectic transformation.

1.4 Central charge

The field strength of the graviphoton is,

$$T^{-}_{\mu\nu} = -2ie^{\mathcal{K}/2}X^{I}(Im\mathcal{N})_{IJ}\mathcal{F}^{J-} = e^{\mathcal{K}/2}(X^{I}\mathcal{G}_{I}^{-} - F_{I}\mathcal{F}^{I-}).$$
(1.24)

The charges associated to $T^-_{\mu\nu}$ measured at infinity,

$$Z = e^{\mathcal{K}/2} (q_I X^I - p^I F_I), \qquad (1.25)$$

is the central charge in $\mathcal{N} = 2$ supersymmetry algebra,

$$\{Q^i_{\alpha}, \bar{Q}_{\dot{\alpha}j}\} = P_{\mu}\sigma^{\mu}_{\alpha\dot{\alpha}}\delta^i_j, \quad \{Q^i_{\alpha}, Q^j_{\beta}\} = Z\epsilon^{ij}\epsilon_{\alpha\beta}, \tag{1.26}$$

where i, j = 1, 2. The BPS bound is,

$$M \ge |Z|. \tag{1.27}$$

2. Calabi-Yau