Special Geometry

Yang Zhang

Abstract: $N=2$ Supergravity*

[^0]
Contents

1. $N=2$ Supergravity 1
1.1 Supersymmetric multiplets 1
1.2 Special geometry 2
1.3 4D action 3
1.4 Central charge 4
2. Calabi-Yau 4

1. $N=2$ Supergravity

1.1 Supersymmetric multiplets

We consider $D=4, N=2$ supergravity. The supersymmetric multiplets with spin less or equal than 2 are,

- One gravity multiplet, containing the graviton $g_{\mu \nu}$, two gravitini ψ_{μ}^{α} and one Abelian gauge field \mathcal{A}_{μ} known as the graviphoton.

$$
\begin{equation*}
\left(-2,-\frac{3^{2}}{2},-1\right)+\left(+1,+\frac{3^{2}}{2},+2\right) \tag{1.1}
\end{equation*}
$$

- n_{V} vector multiplet, each consisting of one Abelian gauge field A_{μ}, two gaugini λ^{α} and one complex scalar z. The complex scalars z take values in a projective special Khler manifold \mathcal{M}_{V} of real dimension $2 n_{V}$.

$$
\begin{equation*}
\left(-1,-\frac{1^{2}}{2}, 0\right)+\left(0,+\frac{1^{2}}{2},+1\right), \quad n_{V} \text { copies } \tag{1.2}
\end{equation*}
$$

- n_{H} hypermultiplets, each consisting of two complex scalars and two hyperinis ψ, $\tilde{\psi}$. The scalars take values in a queternionic-Khler space \mathcal{M}_{h} of real dimension $4 n_{H}$.

$$
\begin{equation*}
\left(-\frac{1}{2}, 0^{2}, \frac{1}{2}\right)+\left(-\frac{1}{2}, 0^{2}, \frac{1}{2}\right), \quad n_{H} \text { copies } \tag{1.3}
\end{equation*}
$$

We consider the ungauged $N=2$ supergravity, i.e., the hypermultiplets is not charged by the vector multiplets. The special geometry describes the vector multiplet.

1.2 Special geometry

The coupling of the vecot multiplets, including the geometry of the scalar manifold \mathcal{M}_{V}, are conveniently described by means of a $S p\left(2 n_{V}+2\right)$ principal bundle ϵ over \mathcal{M}_{V}, and its associated bundle ϵ_{V} in the vector representation of $S p\left(2 n_{V}+2\right)$. The origin of the symplectic symmetry lies in electric-magnetic duality, which mixes the n_{V} vectors A_{μ} and the graviphoton \mathcal{A}_{μ} together with their magnetic duals. Denoting a section Ω by its coordinates $\left(X^{I}, F_{I}\right),\left(I=0, \ldots, n_{V}+1\right)$, the antisymmetric product

$$
\left\langle\Omega, \Omega^{\prime}\right\rangle=\left(\begin{array}{ll}
X^{I} & F_{J}
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \tag{1.4}\\
-1 & 0
\end{array}\right)\binom{X^{\prime J}}{F_{I}^{\prime}}=X^{I} F_{I}^{\prime}-X^{\prime I} F_{I}
$$

The symplectic form is $\left\langle d \Omega, d \Omega^{\prime}\right\rangle=d X^{I} \wedge d F_{I}$.
The geometry of \mathcal{M}_{V} is completely determined by a choice of a holomorphic section $\Omega(z)=\left(X^{I}(z), F_{I}(z)\right)$ taking value in a Lagrangian cone, i.e. a dilation invariant subspace such that $d X^{I} \wedge d F_{I}=0$. The special geometry constraint is,

$$
\begin{equation*}
\partial_{J} X^{I} F_{I}-X^{I} \partial_{J} F_{I}=0, \tag{1.5}
\end{equation*}
$$

where $J=1, \ldots n_{V}+1$ and the derivatives are in the projective coordinates of \mathcal{M}_{V}. Furthermore, we may choose the
X^{I} as the projective coordinates, hence (1.5) is simplified to,

$$
\begin{equation*}
F_{I}=X^{J} \frac{\partial F_{J}}{\partial X_{I}} . \tag{1.6}
\end{equation*}
$$

So we can define the prepotential $F=\frac{1}{2} X^{J} F_{J}$ such that,

$$
\begin{equation*}
F_{I}=\frac{\partial F}{\partial X^{I}} \tag{1.7}
\end{equation*}
$$

The prepotential is an homogeneous function of degree 2 in the X^{I}. The Hessian of the prepotential, $\tau_{I J}=\partial_{I} \partial_{J} F$, is independent of X^{I}. Hence

$$
\begin{equation*}
F_{I}=\tau_{I J} X^{J} \tag{1.8}
\end{equation*}
$$

At a generic point on \mathcal{M}_{V}, we can choose the special coordiates $z_{i}=X^{i} / X^{0}$ $\left(i=1, \ldots, n_{V}\right)$ as the holomorphic coordinates for \mathcal{M}_{V}. Once the holomorphic section $\Omega(z)$ is given, the metric on \mathcal{M}_{V} is obtained from the Kähler potential,

$$
\begin{equation*}
\mathcal{K}\left(z^{i}, \bar{z}^{i}\right)=-\log (i\langle\bar{\Omega}, \Omega\rangle)=-\log \left(i\left(\bar{X}^{I} F_{I}-X^{I} \bar{F}_{I}\right)\right) . \tag{1.9}
\end{equation*}
$$

The metric

$$
\begin{equation*}
g_{i \bar{j}}=\partial_{i} \partial_{\bar{j}} \mathcal{K}=i e^{\mathcal{K}}\left\langle\partial_{i} \Omega, \bar{\partial}_{j} \bar{\Omega}\right\rangle-\partial_{i} \mathcal{K} \bar{\partial}_{j} \mathcal{K} \tag{1.10}
\end{equation*}
$$

Under a Kähler transformation, $\Omega \rightarrow e^{f(z)} \Omega$,

$$
\begin{equation*}
\mathcal{K} \rightarrow \mathcal{K}-f(z)-\bar{f}(\bar{z}), \tag{1.11}
\end{equation*}
$$

and the metric is invariant. We may define the rescaled holomorphic section as,

$$
\begin{equation*}
\tilde{\Omega}=e^{\mathcal{K} / 2} \Omega \tag{1.12}
\end{equation*}
$$

which transforms by a phase, $\tilde{\Omega} \rightarrow e^{(f-\bar{f}) / 2} \tilde{\Omega}$ under the Kähler transformation.
The derived section is defined by $U_{i}=D_{i} \tilde{\Omega}=\left(f_{i}^{I}, h_{i I}\right)$, where

$$
\begin{align*}
f_{i}^{I} & =e^{\mathcal{K} / 2} D_{i} X^{I}=e^{\mathcal{K} / 2}\left(\partial_{i} X^{I}+\partial_{i} \mathcal{K} X^{I}\right) \tag{1.13}\\
h_{i I} & =e^{\mathcal{K} / 2} D_{i} h_{I}=e^{\mathcal{K} / 2}\left(\partial_{i} F_{I}+\partial_{i} \mathcal{K} F_{I}\right) . \tag{1.14}
\end{align*}
$$

Hence the metric is

$$
\begin{equation*}
g_{i \bar{j}}=-i\left\langle U_{i}, \bar{U}_{\bar{j}}\right\rangle . \tag{1.15}
\end{equation*}
$$

1.34 D action

The kinetic term of the $n_{V}+1$ Abelian gauge fields (including the graviphoton) is $\left(I=0, \ldots, n_{V}\right)$,

$$
\begin{equation*}
\mathcal{L}_{\text {Maxwell }}=-\left(\operatorname{Im} \mathcal{N}_{I J}\right) \mathcal{F}^{I} \wedge \star \mathcal{F}^{J}+\left(\operatorname{Re} \mathcal{N}_{I J}\right) \mathcal{F}^{I} \wedge \mathcal{F}^{J} \tag{1.16}
\end{equation*}
$$

where $\mathcal{N}_{I J}$ is defined to be

$$
\begin{equation*}
\mathcal{N}_{I J}=\bar{\tau}_{I J}+2 i \frac{(\operatorname{Im\tau } \cdot X)_{I}(\operatorname{Im} \tau \cdot X)_{J}}{X \cdot \operatorname{Im\tau } \cdot X} . \tag{1.17}
\end{equation*}
$$

which satisfies these relations,

$$
\begin{equation*}
F_{I}=\mathcal{N}_{I J} X^{J}, \quad h_{i I}=\overline{\mathcal{N}}_{I J} f_{i}^{J} . \tag{1.18}
\end{equation*}
$$

Note that $\mathcal{N}_{I J}$ has X dependence, so the coupling constants of the $4 D$ action depend on the vector multiplets moduli. $\operatorname{Im} \mathcal{N}_{I J}$ is a negative definite matrix, as required for the positive definiteness fo the gauge kinetic terms.

We may absorb the Yang-Mills angle terms as,

$$
\begin{equation*}
\mathcal{L}_{\text {Maxwell }}=\operatorname{Im}\left[\overline{\mathcal{N}}_{I J} \mathcal{F}^{I-} \wedge \star \mathcal{F}^{J-}\right] \tag{1.19}
\end{equation*}
$$

where $\mathcal{F}^{I-}=\left(\mathcal{F}^{I}-i \star \mathcal{F}^{I}\right) / \sqrt{2}$.
The dual field of $F^{I ; \mu \nu}$ is, ${ }^{1}$

$$
\begin{equation*}
\mathcal{G}_{I}=\frac{1}{2} \frac{\partial \mathcal{L}_{\text {Maxwell }}}{\partial \mathcal{F}^{I}}=(\operatorname{ReN})_{I J} \mathcal{F}^{J}+(\operatorname{ImN})_{I J} \star \mathcal{F}^{J} \tag{1.20}
\end{equation*}
$$

[^1]Under the symplectic transformation,

$$
\binom{X}{F} \rightarrow\left(\begin{array}{ll}
A & B \tag{1.21}\\
C & D
\end{array}\right)\binom{X}{F}
$$

\mathcal{N} transforms as "period matrix" $\mathcal{N} \rightarrow(C+D \mathcal{N})(A+B \mathcal{N})^{-1}$, while the field strengths $\left(\mathcal{F}^{I-}, G_{I}^{-}=\overline{\mathcal{N}}_{I J} \mathcal{F}_{\mu \nu}^{J-}\right)$ transform as a symplectic vector,

$$
\binom{\mathcal{F}^{-}}{\mathcal{G}^{-}} \rightarrow\left(\begin{array}{ll}
A & B \tag{1.22}\\
C & D
\end{array}\right)\binom{\mathcal{F}^{-}}{\mathcal{G}^{-}}
$$

The 4D action can be rewritten as

$$
\begin{equation*}
\mathcal{L}_{\text {Maxwell }}=\operatorname{Im}\left(G_{I}^{-} \wedge \star \mathcal{F}^{I-}\right), \tag{1.23}
\end{equation*}
$$

which is invariant under the simplectic transformation.

1.4 Central charge

The field strength of the graviphoton is,

$$
\begin{equation*}
T_{\mu \nu}^{-}=-2 i e^{\mathcal{K} / 2} X^{I}(\operatorname{ImN})_{I J} \mathcal{F}^{J-}=e^{\mathcal{K} / 2}\left(X^{I} \mathcal{G}_{I}^{-}-F_{I} \mathcal{F}^{I-}\right) . \tag{1.24}
\end{equation*}
$$

The charges associated to $T_{\mu \nu}^{-}$measured at infinity,

$$
\begin{equation*}
Z=e^{\mathcal{K} / 2}\left(q_{I} X^{I}-p^{I} F_{I}\right) \tag{1.25}
\end{equation*}
$$

is the central charge in $\mathcal{N}=2$ supersymmetry algebra,

$$
\begin{equation*}
\left\{Q_{\alpha}^{i}, \bar{Q}_{\dot{\alpha} j}\right\}=P_{\mu} \sigma_{\alpha \dot{\alpha}}^{\mu} \delta_{j}^{i}, \quad\left\{Q_{\alpha}^{i}, Q_{\beta}^{j}\right\}=Z \epsilon^{i j} \epsilon_{\alpha \beta} \tag{1.26}
\end{equation*}
$$

where $i, j=1,2$. The BPS bound is,

$$
\begin{equation*}
M \geq|Z| \tag{1.27}
\end{equation*}
$$

2. Calabi-Yau

[^0]: *based on hep-th/0607227, Boris PiolineA

[^1]: ${ }^{1}$ The functional derivative should be viewed as the formal derivative in F^{I}, not $F^{I, \mu \nu}$.

